Current File : //lib64/python2.7/unittest/util.py
"""Various utility functions."""
from collections import namedtuple, OrderedDict


__unittest = True

_MAX_LENGTH = 80
def safe_repr(obj, short=False):
    try:
        result = repr(obj)
    except Exception:
        result = object.__repr__(obj)
    if not short or len(result) < _MAX_LENGTH:
        return result
    return result[:_MAX_LENGTH] + ' [truncated]...'


def strclass(cls):
    return "%s.%s" % (cls.__module__, cls.__name__)

def sorted_list_difference(expected, actual):
    """Finds elements in only one or the other of two, sorted input lists.

    Returns a two-element tuple of lists.    The first list contains those
    elements in the "expected" list but not in the "actual" list, and the
    second contains those elements in the "actual" list but not in the
    "expected" list.    Duplicate elements in either input list are ignored.
    """
    i = j = 0
    missing = []
    unexpected = []
    while True:
        try:
            e = expected[i]
            a = actual[j]
            if e < a:
                missing.append(e)
                i += 1
                while expected[i] == e:
                    i += 1
            elif e > a:
                unexpected.append(a)
                j += 1
                while actual[j] == a:
                    j += 1
            else:
                i += 1
                try:
                    while expected[i] == e:
                        i += 1
                finally:
                    j += 1
                    while actual[j] == a:
                        j += 1
        except IndexError:
            missing.extend(expected[i:])
            unexpected.extend(actual[j:])
            break
    return missing, unexpected


def unorderable_list_difference(expected, actual, ignore_duplicate=False):
    """Same behavior as sorted_list_difference but
    for lists of unorderable items (like dicts).

    As it does a linear search per item (remove) it
    has O(n*n) performance.
    """
    missing = []
    unexpected = []
    while expected:
        item = expected.pop()
        try:
            actual.remove(item)
        except ValueError:
            missing.append(item)
        if ignore_duplicate:
            for lst in expected, actual:
                try:
                    while True:
                        lst.remove(item)
                except ValueError:
                    pass
    if ignore_duplicate:
        while actual:
            item = actual.pop()
            unexpected.append(item)
            try:
                while True:
                    actual.remove(item)
            except ValueError:
                pass
        return missing, unexpected

    # anything left in actual is unexpected
    return missing, actual

_Mismatch = namedtuple('Mismatch', 'actual expected value')

def _count_diff_all_purpose(actual, expected):
    'Returns list of (cnt_act, cnt_exp, elem) triples where the counts differ'
    # elements need not be hashable
    s, t = list(actual), list(expected)
    m, n = len(s), len(t)
    NULL = object()
    result = []
    for i, elem in enumerate(s):
        if elem is NULL:
            continue
        cnt_s = cnt_t = 0
        for j in range(i, m):
            if s[j] == elem:
                cnt_s += 1
                s[j] = NULL
        for j, other_elem in enumerate(t):
            if other_elem == elem:
                cnt_t += 1
                t[j] = NULL
        if cnt_s != cnt_t:
            diff = _Mismatch(cnt_s, cnt_t, elem)
            result.append(diff)

    for i, elem in enumerate(t):
        if elem is NULL:
            continue
        cnt_t = 0
        for j in range(i, n):
            if t[j] == elem:
                cnt_t += 1
                t[j] = NULL
        diff = _Mismatch(0, cnt_t, elem)
        result.append(diff)
    return result

def _ordered_count(iterable):
    'Return dict of element counts, in the order they were first seen'
    c = OrderedDict()
    for elem in iterable:
        c[elem] = c.get(elem, 0) + 1
    return c

def _count_diff_hashable(actual, expected):
    'Returns list of (cnt_act, cnt_exp, elem) triples where the counts differ'
    # elements must be hashable
    s, t = _ordered_count(actual), _ordered_count(expected)
    result = []
    for elem, cnt_s in s.items():
        cnt_t = t.get(elem, 0)
        if cnt_s != cnt_t:
            diff = _Mismatch(cnt_s, cnt_t, elem)
            result.append(diff)
    for elem, cnt_t in t.items():
        if elem not in s:
            diff = _Mismatch(0, cnt_t, elem)
            result.append(diff)
    return result
BDM Cricket India: tips, teams, tournaments

Recent Posts

Sweet Bonanza Slot by Pragmatic Play Features and Symbols.421

Sweet Bonanza Slot by Pragmatic Play – Features and Symbols ▶️ PLAY Содержимое Unlocking the Secrets of the Game The Power of the Wilds Exploring the Symbols and Their Meanings Get ready to indulge in a world of sweet treats and big wins with the Sweet Bonanza slot by Pragmatic …

Read More »

Sahabet – Sahabet Casino – Sahabet Giriş.8257

Sahabet – Sahabet Casino – Sahabet Giriş ▶️ OYNAMAK Содержимое Sahabet Giriş ve Sahabet Girişi Sahabet Girişi Güncel Yöntemler Sahabet Bahis ve Sahadanbet Sahabet Casino Hakkında Temel Bilgiler Sahabet Casino Oyunları Sahabet ve Sahabet Casino ile ilgili güncel bilgileri ve giriş yollarını anlatacağım. Sahabet, güvenli ve profesyonel bir platform olarak …

Read More »

Fortune Gems A Deep Dive into the Popular Jili Games Slot.516

Fortune Gems – A Deep Dive into the Popular Jili Games Slot ▶️ PLAY Содержимое Gameplay and Features Fortune Gems Feature Design and Visuals Symbol Design Soundtrack and Music Creating the Perfect Blend For those who are familiar with the world of online slots, the name Jili Games is synonymous …

Read More »

1Win официальный сайт букмекера — 1Вин ставки на спорт.4791

1Win официальный сайт букмекера — 1Вин ставки на спорт ▶️ ИГРАТЬ Содержимое 1Win – Официальный сайт букмекера Ставки на спорт с официального сайта 1Win Преимущества ставок на спорт с 1Win В мире ставок на спорт есть много букмекеров, но не все из них могут похвастаться официальным статусом. 1win – это …

Read More »

CASHlib Casinos in Deutschland – Was bieten sie?

CASHlib Casinos gewinnen in Deutschland immer mehr an Bedeutung. Diese Casinos ermöglichen es Spielern, anonym und sicher mit Prepaid-Guthaben zu bezahlen – ganz ohne Bankverbindung oder Kreditkarte. Besonders für Nutzer, die auf Datenschutz und schnelle Transaktionen Wert legen, sind sie eine interessante Alternative.

Was bieten CASHlib Casinos?

  • Schnelle und anonyme Einzahlungen ohne Registrierung bei Drittanbietern
  • Breites Spielangebot von Slots bis zu Live-Dealer-Spielen
  • Regelmäßige Aktionen wie Freispiele und Cashback
  • Attraktive Willkommensboni für neue Spieler
  • EU-lizenzierte Anbieter mit hohen Sicherheitsstandards

Ein großer Vorteil von CASHlib ist, dass keine sensiblen Bankdaten im Casino hinterlegt werden müssen. Die Gutscheine sind online oder in vielen Verkaufsstellen erhältlich und können sofort verwendet werden. Dadurch entfällt auch die Notwendigkeit, persönliche Daten bei Einzahlungen preiszugeben – ein echter Pluspunkt für sicherheitsbewusste Spieler.

Viele spielothekgermany.com/de/spielothek/cashlib-casinos/ bieten zudem mobile Kompatibilität, einfache Menüführung und professionellen Spielerschutz. Wer nach einem unkomplizierten Zahlungsweg mit solider Auswahl an Spielen und Bonusangeboten sucht, wird bei diesen Plattformen fündig. Die Kombination aus Bequemlichkeit, Sicherheit und einem attraktiven Bonusangebot macht CASHlib Casinos zu einer beliebten Wahl für deutsche Nutzer.

slot 7