Current File : //lib64/python3.6/tracemalloc.py
from collections import Sequence, Iterable
from functools import total_ordering
import fnmatch
import linecache
import os.path
import pickle

# Import types and functions implemented in C
from _tracemalloc import *
from _tracemalloc import _get_object_traceback, _get_traces


def _format_size(size, sign):
    for unit in ('B', 'KiB', 'MiB', 'GiB', 'TiB'):
        if abs(size) < 100 and unit != 'B':
            # 3 digits (xx.x UNIT)
            if sign:
                return "%+.1f %s" % (size, unit)
            else:
                return "%.1f %s" % (size, unit)
        if abs(size) < 10 * 1024 or unit == 'TiB':
            # 4 or 5 digits (xxxx UNIT)
            if sign:
                return "%+.0f %s" % (size, unit)
            else:
                return "%.0f %s" % (size, unit)
        size /= 1024


class Statistic:
    """
    Statistic difference on memory allocations between two Snapshot instance.
    """

    __slots__ = ('traceback', 'size', 'count')

    def __init__(self, traceback, size, count):
        self.traceback = traceback
        self.size = size
        self.count = count

    def __hash__(self):
        return hash((self.traceback, self.size, self.count))

    def __eq__(self, other):
        return (self.traceback == other.traceback
                and self.size == other.size
                and self.count == other.count)

    def __str__(self):
        text = ("%s: size=%s, count=%i"
                 % (self.traceback,
                    _format_size(self.size, False),
                    self.count))
        if self.count:
            average = self.size / self.count
            text += ", average=%s" % _format_size(average, False)
        return text

    def __repr__(self):
        return ('<Statistic traceback=%r size=%i count=%i>'
                % (self.traceback, self.size, self.count))

    def _sort_key(self):
        return (self.size, self.count, self.traceback)


class StatisticDiff:
    """
    Statistic difference on memory allocations between an old and a new
    Snapshot instance.
    """
    __slots__ = ('traceback', 'size', 'size_diff', 'count', 'count_diff')

    def __init__(self, traceback, size, size_diff, count, count_diff):
        self.traceback = traceback
        self.size = size
        self.size_diff = size_diff
        self.count = count
        self.count_diff = count_diff

    def __hash__(self):
        return hash((self.traceback, self.size, self.size_diff,
                     self.count, self.count_diff))

    def __eq__(self, other):
        return (self.traceback == other.traceback
                and self.size == other.size
                and self.size_diff == other.size_diff
                and self.count == other.count
                and self.count_diff == other.count_diff)

    def __str__(self):
        text = ("%s: size=%s (%s), count=%i (%+i)"
                % (self.traceback,
                   _format_size(self.size, False),
                   _format_size(self.size_diff, True),
                   self.count,
                   self.count_diff))
        if self.count:
            average = self.size / self.count
            text += ", average=%s" % _format_size(average, False)
        return text

    def __repr__(self):
        return ('<StatisticDiff traceback=%r size=%i (%+i) count=%i (%+i)>'
                % (self.traceback, self.size, self.size_diff,
                   self.count, self.count_diff))

    def _sort_key(self):
        return (abs(self.size_diff), self.size,
                abs(self.count_diff), self.count,
                self.traceback)


def _compare_grouped_stats(old_group, new_group):
    statistics = []
    for traceback, stat in new_group.items():
        previous = old_group.pop(traceback, None)
        if previous is not None:
            stat = StatisticDiff(traceback,
                                 stat.size, stat.size - previous.size,
                                 stat.count, stat.count - previous.count)
        else:
            stat = StatisticDiff(traceback,
                                 stat.size, stat.size,
                                 stat.count, stat.count)
        statistics.append(stat)

    for traceback, stat in old_group.items():
        stat = StatisticDiff(traceback, 0, -stat.size, 0, -stat.count)
        statistics.append(stat)
    return statistics


@total_ordering
class Frame:
    """
    Frame of a traceback.
    """
    __slots__ = ("_frame",)

    def __init__(self, frame):
        # frame is a tuple: (filename: str, lineno: int)
        self._frame = frame

    @property
    def filename(self):
        return self._frame[0]

    @property
    def lineno(self):
        return self._frame[1]

    def __eq__(self, other):
        return (self._frame == other._frame)

    def __lt__(self, other):
        return (self._frame < other._frame)

    def __hash__(self):
        return hash(self._frame)

    def __str__(self):
        return "%s:%s" % (self.filename, self.lineno)

    def __repr__(self):
        return "<Frame filename=%r lineno=%r>" % (self.filename, self.lineno)


@total_ordering
class Traceback(Sequence):
    """
    Sequence of Frame instances sorted from the most recent frame
    to the oldest frame.
    """
    __slots__ = ("_frames",)

    def __init__(self, frames):
        Sequence.__init__(self)
        # frames is a tuple of frame tuples: see Frame constructor for the
        # format of a frame tuple
        self._frames = frames

    def __len__(self):
        return len(self._frames)

    def __getitem__(self, index):
        if isinstance(index, slice):
            return tuple(Frame(trace) for trace in self._frames[index])
        else:
            return Frame(self._frames[index])

    def __contains__(self, frame):
        return frame._frame in self._frames

    def __hash__(self):
        return hash(self._frames)

    def __eq__(self, other):
        return (self._frames == other._frames)

    def __lt__(self, other):
        return (self._frames < other._frames)

    def __str__(self):
        return str(self[0])

    def __repr__(self):
        return "<Traceback %r>" % (tuple(self),)

    def format(self, limit=None):
        lines = []
        if limit is not None and limit < 0:
            return lines
        for frame in self[:limit]:
            lines.append('  File "%s", line %s'
                         % (frame.filename, frame.lineno))
            line = linecache.getline(frame.filename, frame.lineno).strip()
            if line:
                lines.append('    %s' % line)
        return lines


def get_object_traceback(obj):
    """
    Get the traceback where the Python object *obj* was allocated.
    Return a Traceback instance.

    Return None if the tracemalloc module is not tracing memory allocations or
    did not trace the allocation of the object.
    """
    frames = _get_object_traceback(obj)
    if frames is not None:
        return Traceback(frames)
    else:
        return None


class Trace:
    """
    Trace of a memory block.
    """
    __slots__ = ("_trace",)

    def __init__(self, trace):
        # trace is a tuple: (domain: int, size: int, traceback: tuple).
        # See Traceback constructor for the format of the traceback tuple.
        self._trace = trace

    @property
    def domain(self):
        return self._trace[0]

    @property
    def size(self):
        return self._trace[1]

    @property
    def traceback(self):
        return Traceback(self._trace[2])

    def __eq__(self, other):
        return (self._trace == other._trace)

    def __hash__(self):
        return hash(self._trace)

    def __str__(self):
        return "%s: %s" % (self.traceback, _format_size(self.size, False))

    def __repr__(self):
        return ("<Trace domain=%s size=%s, traceback=%r>"
                % (self.domain, _format_size(self.size, False), self.traceback))


class _Traces(Sequence):
    def __init__(self, traces):
        Sequence.__init__(self)
        # traces is a tuple of trace tuples: see Trace constructor
        self._traces = traces

    def __len__(self):
        return len(self._traces)

    def __getitem__(self, index):
        if isinstance(index, slice):
            return tuple(Trace(trace) for trace in self._traces[index])
        else:
            return Trace(self._traces[index])

    def __contains__(self, trace):
        return trace._trace in self._traces

    def __eq__(self, other):
        return (self._traces == other._traces)

    def __repr__(self):
        return "<Traces len=%s>" % len(self)


def _normalize_filename(filename):
    filename = os.path.normcase(filename)
    if filename.endswith('.pyc'):
        filename = filename[:-1]
    return filename


class BaseFilter:
    def __init__(self, inclusive):
        self.inclusive = inclusive

    def _match(self, trace):
        raise NotImplementedError


class Filter(BaseFilter):
    def __init__(self, inclusive, filename_pattern,
                 lineno=None, all_frames=False, domain=None):
        super().__init__(inclusive)
        self.inclusive = inclusive
        self._filename_pattern = _normalize_filename(filename_pattern)
        self.lineno = lineno
        self.all_frames = all_frames
        self.domain = domain

    @property
    def filename_pattern(self):
        return self._filename_pattern

    def _match_frame_impl(self, filename, lineno):
        filename = _normalize_filename(filename)
        if not fnmatch.fnmatch(filename, self._filename_pattern):
            return False
        if self.lineno is None:
            return True
        else:
            return (lineno == self.lineno)

    def _match_frame(self, filename, lineno):
        return self._match_frame_impl(filename, lineno) ^ (not self.inclusive)

    def _match_traceback(self, traceback):
        if self.all_frames:
            if any(self._match_frame_impl(filename, lineno)
                   for filename, lineno in traceback):
                return self.inclusive
            else:
                return (not self.inclusive)
        else:
            filename, lineno = traceback[0]
            return self._match_frame(filename, lineno)

    def _match(self, trace):
        domain, size, traceback = trace
        res = self._match_traceback(traceback)
        if self.domain is not None:
            if self.inclusive:
                return res and (domain == self.domain)
            else:
                return res or (domain != self.domain)
        return res


class DomainFilter(BaseFilter):
    def __init__(self, inclusive, domain):
        super().__init__(inclusive)
        self._domain = domain

    @property
    def domain(self):
        return self._domain

    def _match(self, trace):
        domain, size, traceback = trace
        return (domain == self.domain) ^ (not self.inclusive)


class Snapshot:
    """
    Snapshot of traces of memory blocks allocated by Python.
    """

    def __init__(self, traces, traceback_limit):
        # traces is a tuple of trace tuples: see _Traces constructor for
        # the exact format
        self.traces = _Traces(traces)
        self.traceback_limit = traceback_limit

    def dump(self, filename):
        """
        Write the snapshot into a file.
        """
        with open(filename, "wb") as fp:
            pickle.dump(self, fp, pickle.HIGHEST_PROTOCOL)

    @staticmethod
    def load(filename):
        """
        Load a snapshot from a file.
        """
        with open(filename, "rb") as fp:
            return pickle.load(fp)

    def _filter_trace(self, include_filters, exclude_filters, trace):
        if include_filters:
            if not any(trace_filter._match(trace)
                       for trace_filter in include_filters):
                return False
        if exclude_filters:
            if any(not trace_filter._match(trace)
                   for trace_filter in exclude_filters):
                return False
        return True

    def filter_traces(self, filters):
        """
        Create a new Snapshot instance with a filtered traces sequence, filters
        is a list of Filter or DomainFilter instances.  If filters is an empty
        list, return a new Snapshot instance with a copy of the traces.
        """
        if not isinstance(filters, Iterable):
            raise TypeError("filters must be a list of filters, not %s"
                            % type(filters).__name__)
        if filters:
            include_filters = []
            exclude_filters = []
            for trace_filter in filters:
                if trace_filter.inclusive:
                    include_filters.append(trace_filter)
                else:
                    exclude_filters.append(trace_filter)
            new_traces = [trace for trace in self.traces._traces
                          if self._filter_trace(include_filters,
                                                exclude_filters,
                                                trace)]
        else:
            new_traces = self.traces._traces.copy()
        return Snapshot(new_traces, self.traceback_limit)

    def _group_by(self, key_type, cumulative):
        if key_type not in ('traceback', 'filename', 'lineno'):
            raise ValueError("unknown key_type: %r" % (key_type,))
        if cumulative and key_type not in ('lineno', 'filename'):
            raise ValueError("cumulative mode cannot by used "
                             "with key type %r" % key_type)

        stats = {}
        tracebacks = {}
        if not cumulative:
            for trace in self.traces._traces:
                domain, size, trace_traceback = trace
                try:
                    traceback = tracebacks[trace_traceback]
                except KeyError:
                    if key_type == 'traceback':
                        frames = trace_traceback
                    elif key_type == 'lineno':
                        frames = trace_traceback[:1]
                    else: # key_type == 'filename':
                        frames = ((trace_traceback[0][0], 0),)
                    traceback = Traceback(frames)
                    tracebacks[trace_traceback] = traceback
                try:
                    stat = stats[traceback]
                    stat.size += size
                    stat.count += 1
                except KeyError:
                    stats[traceback] = Statistic(traceback, size, 1)
        else:
            # cumulative statistics
            for trace in self.traces._traces:
                domain, size, trace_traceback = trace
                for frame in trace_traceback:
                    try:
                        traceback = tracebacks[frame]
                    except KeyError:
                        if key_type == 'lineno':
                            frames = (frame,)
                        else: # key_type == 'filename':
                            frames = ((frame[0], 0),)
                        traceback = Traceback(frames)
                        tracebacks[frame] = traceback
                    try:
                        stat = stats[traceback]
                        stat.size += size
                        stat.count += 1
                    except KeyError:
                        stats[traceback] = Statistic(traceback, size, 1)
        return stats

    def statistics(self, key_type, cumulative=False):
        """
        Group statistics by key_type. Return a sorted list of Statistic
        instances.
        """
        grouped = self._group_by(key_type, cumulative)
        statistics = list(grouped.values())
        statistics.sort(reverse=True, key=Statistic._sort_key)
        return statistics

    def compare_to(self, old_snapshot, key_type, cumulative=False):
        """
        Compute the differences with an old snapshot old_snapshot. Get
        statistics as a sorted list of StatisticDiff instances, grouped by
        group_by.
        """
        new_group = self._group_by(key_type, cumulative)
        old_group = old_snapshot._group_by(key_type, cumulative)
        statistics = _compare_grouped_stats(old_group, new_group)
        statistics.sort(reverse=True, key=StatisticDiff._sort_key)
        return statistics


def take_snapshot():
    """
    Take a snapshot of traces of memory blocks allocated by Python.
    """
    if not is_tracing():
        raise RuntimeError("the tracemalloc module must be tracing memory "
                           "allocations to take a snapshot")
    traces = _get_traces()
    traceback_limit = get_traceback_limit()
    return Snapshot(traces, traceback_limit)
BDM Cricket India: tips, teams, tournaments

Recent Posts

“How To Play Roulette: Guidelines & Betting

Top 7 Best Roulette Strategies However, the number of the house edges on roulette wagers is simply not as fantastic or as diverse as the range within craps. On the American double-zero wheels, the property edge can go from 2. 63% to 8. 89%. The seller will create a dolly …

Read More »

“How To Play Roulette: Guidelines & Betting

Top 7 Best Roulette Strategies However, the number of the house edges on roulette wagers is simply not as fantastic or as diverse as the range within craps. On the American double-zero wheels, the property edge can go from 2. 63% to 8. 89%. The seller will create a dolly …

Read More »

«»step By Stage Guide: কিভাবে Mostbet অ্যাকাউন্ট খুলবো সহজেই Yayasan Ar-rahman

Step By Step Guide Book: Mostbet কিভাবে খেলতে হয় As Effectively As Easily Content কিভাবে Mostbet এ লগইন করবেন How To Log Directly Into Your Mostbet Account Step-by-step Guide: কিভাবে Mostbet অ্যাকাউন্ট খুলবো সহজেই Yayasan Ar-rahman কিভাবে Mostbet এ সাইন আপ করবেন Apostas Desportivas Web-site Para Apostas Vave Online Bónus …

Read More »

Official Site

Mostbet Italy Pt Casino Revisão E Jogos De Azar Content Bem-vindo Ao Universo Mostbets! E-sports E Apostas Virtuais Na Casa Para Aposta Mostbet Esporte De Fantasia Benefícios Para Operating System Usuários Brasileiros Métodos Seguros Para Esquivar Os Dados De Mostbet Login Classificação Weil Mostbet Como Arriesgar Na Mostbet Mostbet: O …

Read More »

CASHlib Casinos in Deutschland – Was bieten sie?

CASHlib Casinos gewinnen in Deutschland immer mehr an Bedeutung. Diese Casinos ermöglichen es Spielern, anonym und sicher mit Prepaid-Guthaben zu bezahlen – ganz ohne Bankverbindung oder Kreditkarte. Besonders für Nutzer, die auf Datenschutz und schnelle Transaktionen Wert legen, sind sie eine interessante Alternative.

Was bieten CASHlib Casinos?

  • Schnelle und anonyme Einzahlungen ohne Registrierung bei Drittanbietern
  • Breites Spielangebot von Slots bis zu Live-Dealer-Spielen
  • Regelmäßige Aktionen wie Freispiele und Cashback
  • Attraktive Willkommensboni für neue Spieler
  • EU-lizenzierte Anbieter mit hohen Sicherheitsstandards

Ein großer Vorteil von CASHlib ist, dass keine sensiblen Bankdaten im Casino hinterlegt werden müssen. Die Gutscheine sind online oder in vielen Verkaufsstellen erhältlich und können sofort verwendet werden. Dadurch entfällt auch die Notwendigkeit, persönliche Daten bei Einzahlungen preiszugeben – ein echter Pluspunkt für sicherheitsbewusste Spieler.

Viele spielothekgermany.com/de/spielothek/cashlib-casinos/ bieten zudem mobile Kompatibilität, einfache Menüführung und professionellen Spielerschutz. Wer nach einem unkomplizierten Zahlungsweg mit solider Auswahl an Spielen und Bonusangeboten sucht, wird bei diesen Plattformen fündig. Die Kombination aus Bequemlichkeit, Sicherheit und einem attraktiven Bonusangebot macht CASHlib Casinos zu einer beliebten Wahl für deutsche Nutzer.

slot 7