Current File : //lib64/python2.7/unittest/util.py
"""Various utility functions."""
from collections import namedtuple, OrderedDict


__unittest = True

_MAX_LENGTH = 80
def safe_repr(obj, short=False):
    try:
        result = repr(obj)
    except Exception:
        result = object.__repr__(obj)
    if not short or len(result) < _MAX_LENGTH:
        return result
    return result[:_MAX_LENGTH] + ' [truncated]...'


def strclass(cls):
    return "%s.%s" % (cls.__module__, cls.__name__)

def sorted_list_difference(expected, actual):
    """Finds elements in only one or the other of two, sorted input lists.

    Returns a two-element tuple of lists.    The first list contains those
    elements in the "expected" list but not in the "actual" list, and the
    second contains those elements in the "actual" list but not in the
    "expected" list.    Duplicate elements in either input list are ignored.
    """
    i = j = 0
    missing = []
    unexpected = []
    while True:
        try:
            e = expected[i]
            a = actual[j]
            if e < a:
                missing.append(e)
                i += 1
                while expected[i] == e:
                    i += 1
            elif e > a:
                unexpected.append(a)
                j += 1
                while actual[j] == a:
                    j += 1
            else:
                i += 1
                try:
                    while expected[i] == e:
                        i += 1
                finally:
                    j += 1
                    while actual[j] == a:
                        j += 1
        except IndexError:
            missing.extend(expected[i:])
            unexpected.extend(actual[j:])
            break
    return missing, unexpected


def unorderable_list_difference(expected, actual, ignore_duplicate=False):
    """Same behavior as sorted_list_difference but
    for lists of unorderable items (like dicts).

    As it does a linear search per item (remove) it
    has O(n*n) performance.
    """
    missing = []
    unexpected = []
    while expected:
        item = expected.pop()
        try:
            actual.remove(item)
        except ValueError:
            missing.append(item)
        if ignore_duplicate:
            for lst in expected, actual:
                try:
                    while True:
                        lst.remove(item)
                except ValueError:
                    pass
    if ignore_duplicate:
        while actual:
            item = actual.pop()
            unexpected.append(item)
            try:
                while True:
                    actual.remove(item)
            except ValueError:
                pass
        return missing, unexpected

    # anything left in actual is unexpected
    return missing, actual

_Mismatch = namedtuple('Mismatch', 'actual expected value')

def _count_diff_all_purpose(actual, expected):
    'Returns list of (cnt_act, cnt_exp, elem) triples where the counts differ'
    # elements need not be hashable
    s, t = list(actual), list(expected)
    m, n = len(s), len(t)
    NULL = object()
    result = []
    for i, elem in enumerate(s):
        if elem is NULL:
            continue
        cnt_s = cnt_t = 0
        for j in range(i, m):
            if s[j] == elem:
                cnt_s += 1
                s[j] = NULL
        for j, other_elem in enumerate(t):
            if other_elem == elem:
                cnt_t += 1
                t[j] = NULL
        if cnt_s != cnt_t:
            diff = _Mismatch(cnt_s, cnt_t, elem)
            result.append(diff)

    for i, elem in enumerate(t):
        if elem is NULL:
            continue
        cnt_t = 0
        for j in range(i, n):
            if t[j] == elem:
                cnt_t += 1
                t[j] = NULL
        diff = _Mismatch(0, cnt_t, elem)
        result.append(diff)
    return result

def _ordered_count(iterable):
    'Return dict of element counts, in the order they were first seen'
    c = OrderedDict()
    for elem in iterable:
        c[elem] = c.get(elem, 0) + 1
    return c

def _count_diff_hashable(actual, expected):
    'Returns list of (cnt_act, cnt_exp, elem) triples where the counts differ'
    # elements must be hashable
    s, t = _ordered_count(actual), _ordered_count(expected)
    result = []
    for elem, cnt_s in s.items():
        cnt_t = t.get(elem, 0)
        if cnt_s != cnt_t:
            diff = _Mismatch(cnt_s, cnt_t, elem)
            result.append(diff)
    for elem, cnt_t in t.items():
        if elem not in s:
            diff = _Mismatch(0, cnt_t, elem)
            result.append(diff)
    return result
BDM Cricket India: tips, teams, tournaments

Recent Posts

Top Android and IOS Apps to Watch Live Score of Cricket and Betting

Cricket Betting Apps

Are you a cricket fan, and looking for applications that are compatible with both Android and IOS operating systems so that you can watch live cricket matches? If yes, then here you will find the 5 Android and IOS applications where you can check the live scores of the match that is being played on the ground.

Read More »

Pakistan National Cricket Team

Pakistan Cricket Team

The Pakistan national cricket team is administrated by the Pakistan Cricket Board (PCB) and popularly known as Shaheens (Urdu for Falcons), Green Shirt, and Men in Green.

Read More »

South Africa Cricket Team

South Africa Cricket Team

The third most loved sport in South Africa is cricket. It is popular among English speaking, and Afrikaans speaking white people. It is one of the world's leading cricket playing nations and is one of 12 countries by the International Cricket Council (ICC) to play Test Cricket.

Read More »

CASHlib Casinos in Deutschland – Was bieten sie?

CASHlib Casinos gewinnen in Deutschland immer mehr an Bedeutung. Diese Casinos ermöglichen es Spielern, anonym und sicher mit Prepaid-Guthaben zu bezahlen – ganz ohne Bankverbindung oder Kreditkarte. Besonders für Nutzer, die auf Datenschutz und schnelle Transaktionen Wert legen, sind sie eine interessante Alternative.

Was bieten CASHlib Casinos?

  • Schnelle und anonyme Einzahlungen ohne Registrierung bei Drittanbietern
  • Breites Spielangebot von Slots bis zu Live-Dealer-Spielen
  • Regelmäßige Aktionen wie Freispiele und Cashback
  • Attraktive Willkommensboni für neue Spieler
  • EU-lizenzierte Anbieter mit hohen Sicherheitsstandards

Ein großer Vorteil von CASHlib ist, dass keine sensiblen Bankdaten im Casino hinterlegt werden müssen. Die Gutscheine sind online oder in vielen Verkaufsstellen erhältlich und können sofort verwendet werden. Dadurch entfällt auch die Notwendigkeit, persönliche Daten bei Einzahlungen preiszugeben – ein echter Pluspunkt für sicherheitsbewusste Spieler.

Viele spielothekgermany.com/de/spielothek/cashlib-casinos/ bieten zudem mobile Kompatibilität, einfache Menüführung und professionellen Spielerschutz. Wer nach einem unkomplizierten Zahlungsweg mit solider Auswahl an Spielen und Bonusangeboten sucht, wird bei diesen Plattformen fündig. Die Kombination aus Bequemlichkeit, Sicherheit und einem attraktiven Bonusangebot macht CASHlib Casinos zu einer beliebten Wahl für deutsche Nutzer.

slot 7