Current File : //lib64/python3.6/types.py
"""
Define names for built-in types that aren't directly accessible as a builtin.
"""
import sys

# Iterators in Python aren't a matter of type but of protocol.  A large
# and changing number of builtin types implement *some* flavor of
# iterator.  Don't check the type!  Use hasattr to check for both
# "__iter__" and "__next__" attributes instead.

def _f(): pass
FunctionType = type(_f)
LambdaType = type(lambda: None)         # Same as FunctionType
CodeType = type(_f.__code__)
MappingProxyType = type(type.__dict__)
SimpleNamespace = type(sys.implementation)

def _g():
    yield 1
GeneratorType = type(_g())

async def _c(): pass
_c = _c()
CoroutineType = type(_c)
_c.close()  # Prevent ResourceWarning

async def _ag():
    yield
_ag = _ag()
AsyncGeneratorType = type(_ag)

class _C:
    def _m(self): pass
MethodType = type(_C()._m)

BuiltinFunctionType = type(len)
BuiltinMethodType = type([].append)     # Same as BuiltinFunctionType

ModuleType = type(sys)

try:
    raise TypeError
except TypeError:
    tb = sys.exc_info()[2]
    TracebackType = type(tb)
    FrameType = type(tb.tb_frame)
    tb = None; del tb

# For Jython, the following two types are identical
GetSetDescriptorType = type(FunctionType.__code__)
MemberDescriptorType = type(FunctionType.__globals__)

del sys, _f, _g, _C, _c,                           # Not for export


# Provide a PEP 3115 compliant mechanism for class creation
def new_class(name, bases=(), kwds=None, exec_body=None):
    """Create a class object dynamically using the appropriate metaclass."""
    meta, ns, kwds = prepare_class(name, bases, kwds)
    if exec_body is not None:
        exec_body(ns)
    return meta(name, bases, ns, **kwds)

def prepare_class(name, bases=(), kwds=None):
    """Call the __prepare__ method of the appropriate metaclass.

    Returns (metaclass, namespace, kwds) as a 3-tuple

    *metaclass* is the appropriate metaclass
    *namespace* is the prepared class namespace
    *kwds* is an updated copy of the passed in kwds argument with any
    'metaclass' entry removed. If no kwds argument is passed in, this will
    be an empty dict.
    """
    if kwds is None:
        kwds = {}
    else:
        kwds = dict(kwds) # Don't alter the provided mapping
    if 'metaclass' in kwds:
        meta = kwds.pop('metaclass')
    else:
        if bases:
            meta = type(bases[0])
        else:
            meta = type
    if isinstance(meta, type):
        # when meta is a type, we first determine the most-derived metaclass
        # instead of invoking the initial candidate directly
        meta = _calculate_meta(meta, bases)
    if hasattr(meta, '__prepare__'):
        ns = meta.__prepare__(name, bases, **kwds)
    else:
        ns = {}
    return meta, ns, kwds

def _calculate_meta(meta, bases):
    """Calculate the most derived metaclass."""
    winner = meta
    for base in bases:
        base_meta = type(base)
        if issubclass(winner, base_meta):
            continue
        if issubclass(base_meta, winner):
            winner = base_meta
            continue
        # else:
        raise TypeError("metaclass conflict: "
                        "the metaclass of a derived class "
                        "must be a (non-strict) subclass "
                        "of the metaclasses of all its bases")
    return winner

class DynamicClassAttribute:
    """Route attribute access on a class to __getattr__.

    This is a descriptor, used to define attributes that act differently when
    accessed through an instance and through a class.  Instance access remains
    normal, but access to an attribute through a class will be routed to the
    class's __getattr__ method; this is done by raising AttributeError.

    This allows one to have properties active on an instance, and have virtual
    attributes on the class with the same name (see Enum for an example).

    """
    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        # next two lines make DynamicClassAttribute act the same as property
        self.__doc__ = doc or fget.__doc__
        self.overwrite_doc = doc is None
        # support for abstract methods
        self.__isabstractmethod__ = bool(getattr(fget, '__isabstractmethod__', False))

    def __get__(self, instance, ownerclass=None):
        if instance is None:
            if self.__isabstractmethod__:
                return self
            raise AttributeError()
        elif self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(instance)

    def __set__(self, instance, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(instance, value)

    def __delete__(self, instance):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(instance)

    def getter(self, fget):
        fdoc = fget.__doc__ if self.overwrite_doc else None
        result = type(self)(fget, self.fset, self.fdel, fdoc or self.__doc__)
        result.overwrite_doc = self.overwrite_doc
        return result

    def setter(self, fset):
        result = type(self)(self.fget, fset, self.fdel, self.__doc__)
        result.overwrite_doc = self.overwrite_doc
        return result

    def deleter(self, fdel):
        result = type(self)(self.fget, self.fset, fdel, self.__doc__)
        result.overwrite_doc = self.overwrite_doc
        return result


import functools as _functools
import collections.abc as _collections_abc

class _GeneratorWrapper:
    # TODO: Implement this in C.
    def __init__(self, gen):
        self.__wrapped = gen
        self.__isgen = gen.__class__ is GeneratorType
        self.__name__ = getattr(gen, '__name__', None)
        self.__qualname__ = getattr(gen, '__qualname__', None)
    def send(self, val):
        return self.__wrapped.send(val)
    def throw(self, tp, *rest):
        return self.__wrapped.throw(tp, *rest)
    def close(self):
        return self.__wrapped.close()
    @property
    def gi_code(self):
        return self.__wrapped.gi_code
    @property
    def gi_frame(self):
        return self.__wrapped.gi_frame
    @property
    def gi_running(self):
        return self.__wrapped.gi_running
    @property
    def gi_yieldfrom(self):
        return self.__wrapped.gi_yieldfrom
    cr_code = gi_code
    cr_frame = gi_frame
    cr_running = gi_running
    cr_await = gi_yieldfrom
    def __next__(self):
        return next(self.__wrapped)
    def __iter__(self):
        if self.__isgen:
            return self.__wrapped
        return self
    __await__ = __iter__

def coroutine(func):
    """Convert regular generator function to a coroutine."""

    if not callable(func):
        raise TypeError('types.coroutine() expects a callable')

    if (func.__class__ is FunctionType and
        getattr(func, '__code__', None).__class__ is CodeType):

        co_flags = func.__code__.co_flags

        # Check if 'func' is a coroutine function.
        # (0x180 == CO_COROUTINE | CO_ITERABLE_COROUTINE)
        if co_flags & 0x180:
            return func

        # Check if 'func' is a generator function.
        # (0x20 == CO_GENERATOR)
        if co_flags & 0x20:
            # TODO: Implement this in C.
            co = func.__code__
            func.__code__ = CodeType(
                co.co_argcount, co.co_kwonlyargcount, co.co_nlocals,
                co.co_stacksize,
                co.co_flags | 0x100,  # 0x100 == CO_ITERABLE_COROUTINE
                co.co_code,
                co.co_consts, co.co_names, co.co_varnames, co.co_filename,
                co.co_name, co.co_firstlineno, co.co_lnotab, co.co_freevars,
                co.co_cellvars)
            return func

    # The following code is primarily to support functions that
    # return generator-like objects (for instance generators
    # compiled with Cython).

    @_functools.wraps(func)
    def wrapped(*args, **kwargs):
        coro = func(*args, **kwargs)
        if (coro.__class__ is CoroutineType or
            coro.__class__ is GeneratorType and coro.gi_code.co_flags & 0x100):
            # 'coro' is a native coroutine object or an iterable coroutine
            return coro
        if (isinstance(coro, _collections_abc.Generator) and
            not isinstance(coro, _collections_abc.Coroutine)):
            # 'coro' is either a pure Python generator iterator, or it
            # implements collections.abc.Generator (and does not implement
            # collections.abc.Coroutine).
            return _GeneratorWrapper(coro)
        # 'coro' is either an instance of collections.abc.Coroutine or
        # some other object -- pass it through.
        return coro

    return wrapped


__all__ = [n for n in globals() if n[:1] != '_']
BDM Cricket India: tips, teams, tournaments

Recent Posts

Massimizza le tue vincite con lapp 20 bet scommesse veloci e facili!

Massimizza le tue vincite con lapp 20 bet: scommesse veloci e facili! Caratteristiche principali della 20 bet app Interfaccia user-friendly Live betting e statistiche Promozioni e bonus Tipi di scommesse disponibili Scommesse sportive tradizionali Eventi di intrattenimento e cultura pop Strategie per vincere con la 20 bet app Ricerca e …

Read More »

Esplorando le offerte esclusive di 20bet

Esplorando le offerte esclusive di 20bet Una panoramica delle scommesse sportive Scommesse live e in tempo reale Bonus e promozioni sulle scommesse sportive Il mondo dei giochi da casinò Tipologie di giochi da casinò disponibili Esperienze di gioco dal vivo Bonus e promozioni per i giochi da casinò Gestione del …

Read More »

20 Bet Casino Le Opportunità di Scommessa da Non Perdere

20 Bet Casino: Le Opportunità di Scommessa da Non Perdere Le Tipologie di Giochi Offerti Slot Machine Giochi da Tavolo I Vantaggi delle Scommesse Online Sicurezza e Affidabilità Bonus e Promozioni: Un Mondo di Opportunità Termini e Condizioni dei Bonus Assistenza Clienti: Un Supporto Valido Considerazioni Finali e Prospettive 20 …

Read More »

Niech emocje w kasynie porwą Cię w wir niesamowitych przygód!

Niech emocje w kasynie porwą Cię w wir niesamowitych przygód! Historia kasyn: Od starożytności do współczesności Rodzaje kasyn Gry karciane: Mistrzostwo w strategii Najpopularniejsze gry dzięk rzeczywistości wirtualnej Automaty do gier: Magia szansy Jak grać na automatach do gier Bonusy i promocje w kasynach Najpopularniejsze promocje Bezpieczeństwo w kasynach Jak …

Read More »

CASHlib Casinos in Deutschland – Was bieten sie?

CASHlib Casinos gewinnen in Deutschland immer mehr an Bedeutung. Diese Casinos ermöglichen es Spielern, anonym und sicher mit Prepaid-Guthaben zu bezahlen – ganz ohne Bankverbindung oder Kreditkarte. Besonders für Nutzer, die auf Datenschutz und schnelle Transaktionen Wert legen, sind sie eine interessante Alternative.

Was bieten CASHlib Casinos?

  • Schnelle und anonyme Einzahlungen ohne Registrierung bei Drittanbietern
  • Breites Spielangebot von Slots bis zu Live-Dealer-Spielen
  • Regelmäßige Aktionen wie Freispiele und Cashback
  • Attraktive Willkommensboni für neue Spieler
  • EU-lizenzierte Anbieter mit hohen Sicherheitsstandards

Ein großer Vorteil von CASHlib ist, dass keine sensiblen Bankdaten im Casino hinterlegt werden müssen. Die Gutscheine sind online oder in vielen Verkaufsstellen erhältlich und können sofort verwendet werden. Dadurch entfällt auch die Notwendigkeit, persönliche Daten bei Einzahlungen preiszugeben – ein echter Pluspunkt für sicherheitsbewusste Spieler.

Viele spielothekgermany.com/de/spielothek/cashlib-casinos/ bieten zudem mobile Kompatibilität, einfache Menüführung und professionellen Spielerschutz. Wer nach einem unkomplizierten Zahlungsweg mit solider Auswahl an Spielen und Bonusangeboten sucht, wird bei diesen Plattformen fündig. Die Kombination aus Bequemlichkeit, Sicherheit und einem attraktiven Bonusangebot macht CASHlib Casinos zu einer beliebten Wahl für deutsche Nutzer.

slot 7