Current File : //lib64/python2.7/_abcoll.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

DON'T USE THIS MODULE DIRECTLY!  The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues.  Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
           "Sized", "Container", "Callable",
           "Set", "MutableSet",
           "Mapping", "MutableMapping",
           "MappingView", "KeysView", "ItemsView", "ValuesView",
           "Sequence", "MutableSequence",
           ]

### ONE-TRICK PONIES ###

def _hasattr(C, attr):
    try:
        return any(attr in B.__dict__ for B in C.__mro__)
    except AttributeError:
        # Old-style class
        return hasattr(C, attr)


class Hashable:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __hash__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Hashable:
            try:
                for B in C.__mro__:
                    if "__hash__" in B.__dict__:
                        if B.__dict__["__hash__"]:
                            return True
                        break
            except AttributeError:
                # Old-style class
                if getattr(C, "__hash__", None):
                    return True
        return NotImplemented


class Iterable:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __iter__(self):
        while False:
            yield None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterable:
            if _hasattr(C, "__iter__"):
                return True
        return NotImplemented

Iterable.register(str)


class Iterator(Iterable):

    @abstractmethod
    def next(self):
        'Return the next item from the iterator. When exhausted, raise StopIteration'
        raise StopIteration

    def __iter__(self):
        return self

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterator:
            if _hasattr(C, "next") and _hasattr(C, "__iter__"):
                return True
        return NotImplemented


class Sized:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __len__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Sized:
            if _hasattr(C, "__len__"):
                return True
        return NotImplemented


class Container:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __contains__(self, x):
        return False

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Container:
            if _hasattr(C, "__contains__"):
                return True
        return NotImplemented


class Callable:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __call__(self, *args, **kwds):
        return False

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Callable:
            if _hasattr(C, "__call__"):
                return True
        return NotImplemented


### SETS ###


class Set(Sized, Iterable, Container):
    """A set is a finite, iterable container.

    This class provides concrete generic implementations of all
    methods except for __contains__, __iter__ and __len__.

    To override the comparisons (presumably for speed, as the
    semantics are fixed), all you have to do is redefine __le__ and
    then the other operations will automatically follow suit.
    """

    def __le__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        if len(self) > len(other):
            return False
        for elem in self:
            if elem not in other:
                return False
        return True

    def __lt__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) < len(other) and self.__le__(other)

    def __gt__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return other < self

    def __ge__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return other <= self

    def __eq__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) == len(other) and self.__le__(other)

    def __ne__(self, other):
        return not (self == other)

    @classmethod
    def _from_iterable(cls, it):
        '''Construct an instance of the class from any iterable input.

        Must override this method if the class constructor signature
        does not accept an iterable for an input.
        '''
        return cls(it)

    def __and__(self, other):
        if not isinstance(other, Iterable):
            return NotImplemented
        return self._from_iterable(value for value in other if value in self)

    def isdisjoint(self, other):
        'Return True if two sets have a null intersection.'
        for value in other:
            if value in self:
                return False
        return True

    def __or__(self, other):
        if not isinstance(other, Iterable):
            return NotImplemented
        chain = (e for s in (self, other) for e in s)
        return self._from_iterable(chain)

    def __sub__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return self._from_iterable(value for value in self
                                   if value not in other)

    def __xor__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return (self - other) | (other - self)

    # Sets are not hashable by default, but subclasses can change this
    __hash__ = None

    def _hash(self):
        """Compute the hash value of a set.

        Note that we don't define __hash__: not all sets are hashable.
        But if you define a hashable set type, its __hash__ should
        call this function.

        This must be compatible __eq__.

        All sets ought to compare equal if they contain the same
        elements, regardless of how they are implemented, and
        regardless of the order of the elements; so there's not much
        freedom for __eq__ or __hash__.  We match the algorithm used
        by the built-in frozenset type.
        """
        MAX = sys.maxint
        MASK = 2 * MAX + 1
        n = len(self)
        h = 1927868237 * (n + 1)
        h &= MASK
        for x in self:
            hx = hash(x)
            h ^= (hx ^ (hx << 16) ^ 89869747)  * 3644798167
            h &= MASK
        h = h * 69069 + 907133923
        h &= MASK
        if h > MAX:
            h -= MASK + 1
        if h == -1:
            h = 590923713
        return h

Set.register(frozenset)


class MutableSet(Set):
    """A mutable set is a finite, iterable container.

    This class provides concrete generic implementations of all
    methods except for __contains__, __iter__, __len__,
    add(), and discard().

    To override the comparisons (presumably for speed, as the
    semantics are fixed), all you have to do is redefine __le__ and
    then the other operations will automatically follow suit.
    """

    @abstractmethod
    def add(self, value):
        """Add an element."""
        raise NotImplementedError

    @abstractmethod
    def discard(self, value):
        """Remove an element.  Do not raise an exception if absent."""
        raise NotImplementedError

    def remove(self, value):
        """Remove an element. If not a member, raise a KeyError."""
        if value not in self:
            raise KeyError(value)
        self.discard(value)

    def pop(self):
        """Return the popped value.  Raise KeyError if empty."""
        it = iter(self)
        try:
            value = next(it)
        except StopIteration:
            raise KeyError
        self.discard(value)
        return value

    def clear(self):
        """This is slow (creates N new iterators!) but effective."""
        try:
            while True:
                self.pop()
        except KeyError:
            pass

    def __ior__(self, it):
        for value in it:
            self.add(value)
        return self

    def __iand__(self, it):
        for value in (self - it):
            self.discard(value)
        return self

    def __ixor__(self, it):
        if it is self:
            self.clear()
        else:
            if not isinstance(it, Set):
                it = self._from_iterable(it)
            for value in it:
                if value in self:
                    self.discard(value)
                else:
                    self.add(value)
        return self

    def __isub__(self, it):
        if it is self:
            self.clear()
        else:
            for value in it:
                self.discard(value)
        return self

MutableSet.register(set)


### MAPPINGS ###


class Mapping(Sized, Iterable, Container):

    """A Mapping is a generic container for associating key/value
    pairs.

    This class provides concrete generic implementations of all
    methods except for __getitem__, __iter__, and __len__.

    """

    @abstractmethod
    def __getitem__(self, key):
        raise KeyError

    def get(self, key, default=None):
        'D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.'
        try:
            return self[key]
        except KeyError:
            return default

    def __contains__(self, key):
        try:
            self[key]
        except KeyError:
            return False
        else:
            return True

    def iterkeys(self):
        'D.iterkeys() -> an iterator over the keys of D'
        return iter(self)

    def itervalues(self):
        'D.itervalues() -> an iterator over the values of D'
        for key in self:
            yield self[key]

    def iteritems(self):
        'D.iteritems() -> an iterator over the (key, value) items of D'
        for key in self:
            yield (key, self[key])

    def keys(self):
        "D.keys() -> list of D's keys"
        return list(self)

    def items(self):
        "D.items() -> list of D's (key, value) pairs, as 2-tuples"
        return [(key, self[key]) for key in self]

    def values(self):
        "D.values() -> list of D's values"
        return [self[key] for key in self]

    # Mappings are not hashable by default, but subclasses can change this
    __hash__ = None

    def __eq__(self, other):
        if not isinstance(other, Mapping):
            return NotImplemented
        return dict(self.items()) == dict(other.items())

    def __ne__(self, other):
        return not (self == other)

class MappingView(Sized):

    def __init__(self, mapping):
        self._mapping = mapping

    def __len__(self):
        return len(self._mapping)

    def __repr__(self):
        return '{0.__class__.__name__}({0._mapping!r})'.format(self)


class KeysView(MappingView, Set):

    @classmethod
    def _from_iterable(self, it):
        return set(it)

    def __contains__(self, key):
        return key in self._mapping

    def __iter__(self):
        for key in self._mapping:
            yield key


class ItemsView(MappingView, Set):

    @classmethod
    def _from_iterable(self, it):
        return set(it)

    def __contains__(self, item):
        key, value = item
        try:
            v = self._mapping[key]
        except KeyError:
            return False
        else:
            return v == value

    def __iter__(self):
        for key in self._mapping:
            yield (key, self._mapping[key])


class ValuesView(MappingView):

    def __contains__(self, value):
        for key in self._mapping:
            if value == self._mapping[key]:
                return True
        return False

    def __iter__(self):
        for key in self._mapping:
            yield self._mapping[key]


class MutableMapping(Mapping):

    """A MutableMapping is a generic container for associating
    key/value pairs.

    This class provides concrete generic implementations of all
    methods except for __getitem__, __setitem__, __delitem__,
    __iter__, and __len__.

    """

    @abstractmethod
    def __setitem__(self, key, value):
        raise KeyError

    @abstractmethod
    def __delitem__(self, key):
        raise KeyError

    __marker = object()

    def pop(self, key, default=__marker):
        '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
          If key is not found, d is returned if given, otherwise KeyError is raised.
        '''
        try:
            value = self[key]
        except KeyError:
            if default is self.__marker:
                raise
            return default
        else:
            del self[key]
            return value

    def popitem(self):
        '''D.popitem() -> (k, v), remove and return some (key, value) pair
           as a 2-tuple; but raise KeyError if D is empty.
        '''
        try:
            key = next(iter(self))
        except StopIteration:
            raise KeyError
        value = self[key]
        del self[key]
        return key, value

    def clear(self):
        'D.clear() -> None.  Remove all items from D.'
        try:
            while True:
                self.popitem()
        except KeyError:
            pass

    def update(*args, **kwds):
        ''' D.update([E, ]**F) -> None.  Update D from mapping/iterable E and F.
            If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
            If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
            In either case, this is followed by: for k, v in F.items(): D[k] = v
        '''
        if len(args) > 2:
            raise TypeError("update() takes at most 2 positional "
                            "arguments ({} given)".format(len(args)))
        elif not args:
            raise TypeError("update() takes at least 1 argument (0 given)")
        self = args[0]
        other = args[1] if len(args) >= 2 else ()

        if isinstance(other, Mapping):
            for key in other:
                self[key] = other[key]
        elif hasattr(other, "keys"):
            for key in other.keys():
                self[key] = other[key]
        else:
            for key, value in other:
                self[key] = value
        for key, value in kwds.items():
            self[key] = value

    def setdefault(self, key, default=None):
        'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
        try:
            return self[key]
        except KeyError:
            self[key] = default
        return default

MutableMapping.register(dict)


### SEQUENCES ###


class Sequence(Sized, Iterable, Container):
    """All the operations on a read-only sequence.

    Concrete subclasses must override __new__ or __init__,
    __getitem__, and __len__.
    """

    @abstractmethod
    def __getitem__(self, index):
        raise IndexError

    def __iter__(self):
        i = 0
        try:
            while True:
                v = self[i]
                yield v
                i += 1
        except IndexError:
            return

    def __contains__(self, value):
        for v in self:
            if v == value:
                return True
        return False

    def __reversed__(self):
        for i in reversed(range(len(self))):
            yield self[i]

    def index(self, value):
        '''S.index(value) -> integer -- return first index of value.
           Raises ValueError if the value is not present.
        '''
        for i, v in enumerate(self):
            if v == value:
                return i
        raise ValueError

    def count(self, value):
        'S.count(value) -> integer -- return number of occurrences of value'
        return sum(1 for v in self if v == value)

Sequence.register(tuple)
Sequence.register(basestring)
Sequence.register(buffer)
Sequence.register(xrange)


class MutableSequence(Sequence):

    """All the operations on a read-only sequence.

    Concrete subclasses must provide __new__ or __init__,
    __getitem__, __setitem__, __delitem__, __len__, and insert().

    """

    @abstractmethod
    def __setitem__(self, index, value):
        raise IndexError

    @abstractmethod
    def __delitem__(self, index):
        raise IndexError

    @abstractmethod
    def insert(self, index, value):
        'S.insert(index, object) -- insert object before index'
        raise IndexError

    def append(self, value):
        'S.append(object) -- append object to the end of the sequence'
        self.insert(len(self), value)

    def reverse(self):
        'S.reverse() -- reverse *IN PLACE*'
        n = len(self)
        for i in range(n//2):
            self[i], self[n-i-1] = self[n-i-1], self[i]

    def extend(self, values):
        'S.extend(iterable) -- extend sequence by appending elements from the iterable'
        for v in values:
            self.append(v)

    def pop(self, index=-1):
        '''S.pop([index]) -> item -- remove and return item at index (default last).
           Raise IndexError if list is empty or index is out of range.
        '''
        v = self[index]
        del self[index]
        return v

    def remove(self, value):
        '''S.remove(value) -- remove first occurrence of value.
           Raise ValueError if the value is not present.
        '''
        del self[self.index(value)]

    def __iadd__(self, values):
        self.extend(values)
        return self

MutableSequence.register(list)
BDM Cricket India: tips, teams, tournaments

Recent Posts

n Yaxşı Azərbaycan Kazinoları 2025 Mobil Uyğun Oyun Saytları.976

Ən Yaxşı Azərbaycan Kazinoları 2025 – Mobil Uyğun Oyun Saytları ▶️ OYNA Содержимое Onlayn Kazinoların Ən Yaxşı Növləri Kazino Oyunları Növləri Onlayn Kazinoların Xüsusiyyətləri Mobil Uyğun Onlayn Kazinoların Xüsiyyətləri Ən Etibarlı Onlayn Kazinoların Seçimi Etibarlı Onlayn Kazinoların Xüsusiyyətləri Kazino Oyunlarının Çeşidi Onlayn Kazinolarda Qeydiyyat və Oyunun Başlanğıcı Qeydiyyat Prosedi Oyunun …

Read More »

Pin Up Казино – Официальный сайт Пин Ап вход на зеркало (2025).3235

Pin Up Казино – Официальный сайт Пин Ап вход на зеркало (2025) ▶️ ИГРАТЬ Содержимое Pin Up Казино – Официальный сайт Пин Ап Преимущества Pin Up Казино Вход на зеркало (2025) Преимущества и функции Pin Up Казино Как начать играть в Pin Up Казино Доступные методы оплаты Отзывы и рейтинг …

Read More »

Казино Официальный сайт Pin Up Casino играть онлайн – Вход, Зеркало.6473

Пин Ап Казино Официальный сайт | Pin Up Casino играть онлайн – Вход, Зеркало ▶️ ИГРАТЬ Содержимое Pin Up Casino: Официальный Сайт Вход в Казино Зеркало Казино Как Играть Онлайн в Пинап Казино Шаг 1: Регистрация Шаг 2: Депозит Шаг 3: Выбор Игры Шаг 4: Играть Преимущества игроков в Pin …

Read More »

1win официальный сайт букмекера — Обзор и зеркало для входа.3344

1win официальный сайт букмекера — Обзор и зеркало для входа ▶️ ИГРАТЬ Содержимое 1win Официальный Сайт Букмекера Преимущества официального сайта 1вин Обзор и Зеркало для Входа Преимущества и Функции Официального Сайта 1win Функции официального сайта 1win: В мире ставок и азарта 1вин является одним из самых популярных букмекеров, предлагающих широкий …

Read More »

CASHlib Casinos in Deutschland – Was bieten sie?

CASHlib Casinos gewinnen in Deutschland immer mehr an Bedeutung. Diese Casinos ermöglichen es Spielern, anonym und sicher mit Prepaid-Guthaben zu bezahlen – ganz ohne Bankverbindung oder Kreditkarte. Besonders für Nutzer, die auf Datenschutz und schnelle Transaktionen Wert legen, sind sie eine interessante Alternative.

Was bieten CASHlib Casinos?

  • Schnelle und anonyme Einzahlungen ohne Registrierung bei Drittanbietern
  • Breites Spielangebot von Slots bis zu Live-Dealer-Spielen
  • Regelmäßige Aktionen wie Freispiele und Cashback
  • Attraktive Willkommensboni für neue Spieler
  • EU-lizenzierte Anbieter mit hohen Sicherheitsstandards

Ein großer Vorteil von CASHlib ist, dass keine sensiblen Bankdaten im Casino hinterlegt werden müssen. Die Gutscheine sind online oder in vielen Verkaufsstellen erhältlich und können sofort verwendet werden. Dadurch entfällt auch die Notwendigkeit, persönliche Daten bei Einzahlungen preiszugeben – ein echter Pluspunkt für sicherheitsbewusste Spieler.

Viele spielothekgermany.com/de/spielothek/cashlib-casinos/ bieten zudem mobile Kompatibilität, einfache Menüführung und professionellen Spielerschutz. Wer nach einem unkomplizierten Zahlungsweg mit solider Auswahl an Spielen und Bonusangeboten sucht, wird bei diesen Plattformen fündig. Die Kombination aus Bequemlichkeit, Sicherheit und einem attraktiven Bonusangebot macht CASHlib Casinos zu einer beliebten Wahl für deutsche Nutzer.

slot 7