Current File : //lib64/python2.7/csv.py
"""
csv.py - read/write/investigate CSV files
"""

import re
from functools import reduce
from _csv import Error, __version__, writer, reader, register_dialect, \
                 unregister_dialect, get_dialect, list_dialects, \
                 field_size_limit, \
                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
                 __doc__
from _csv import Dialect as _Dialect

try:
    from cStringIO import StringIO
except ImportError:
    from StringIO import StringIO

__all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
            "Error", "Dialect", "__doc__", "excel", "excel_tab",
            "field_size_limit", "reader", "writer",
            "register_dialect", "get_dialect", "list_dialects", "Sniffer",
            "unregister_dialect", "__version__", "DictReader", "DictWriter" ]

class Dialect:
    """Describe an Excel dialect.

    This must be subclassed (see csv.excel).  Valid attributes are:
    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
    lineterminator, quoting.

    """
    _name = ""
    _valid = False
    # placeholders
    delimiter = None
    quotechar = None
    escapechar = None
    doublequote = None
    skipinitialspace = None
    lineterminator = None
    quoting = None

    def __init__(self):
        if self.__class__ != Dialect:
            self._valid = True
        self._validate()

    def _validate(self):
        try:
            _Dialect(self)
        except TypeError, e:
            # We do this for compatibility with py2.3
            raise Error(str(e))

class excel(Dialect):
    """Describe the usual properties of Excel-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\r\n'
    quoting = QUOTE_MINIMAL
register_dialect("excel", excel)

class excel_tab(excel):
    """Describe the usual properties of Excel-generated TAB-delimited files."""
    delimiter = '\t'
register_dialect("excel-tab", excel_tab)


class DictReader:
    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
                 dialect="excel", *args, **kwds):
        self._fieldnames = fieldnames   # list of keys for the dict
        self.restkey = restkey          # key to catch long rows
        self.restval = restval          # default value for short rows
        self.reader = reader(f, dialect, *args, **kwds)
        self.dialect = dialect
        self.line_num = 0

    def __iter__(self):
        return self

    @property
    def fieldnames(self):
        if self._fieldnames is None:
            try:
                self._fieldnames = self.reader.next()
            except StopIteration:
                pass
        self.line_num = self.reader.line_num
        return self._fieldnames

    @fieldnames.setter
    def fieldnames(self, value):
        self._fieldnames = value

    def next(self):
        if self.line_num == 0:
            # Used only for its side effect.
            self.fieldnames
        row = self.reader.next()
        self.line_num = self.reader.line_num

        # unlike the basic reader, we prefer not to return blanks,
        # because we will typically wind up with a dict full of None
        # values
        while row == []:
            row = self.reader.next()
        d = dict(zip(self.fieldnames, row))
        lf = len(self.fieldnames)
        lr = len(row)
        if lf < lr:
            d[self.restkey] = row[lf:]
        elif lf > lr:
            for key in self.fieldnames[lr:]:
                d[key] = self.restval
        return d


class DictWriter:
    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
                 dialect="excel", *args, **kwds):
        self.fieldnames = fieldnames    # list of keys for the dict
        self.restval = restval          # for writing short dicts
        if extrasaction.lower() not in ("raise", "ignore"):
            raise ValueError, \
                  ("extrasaction (%s) must be 'raise' or 'ignore'" %
                   extrasaction)
        self.extrasaction = extrasaction
        self.writer = writer(f, dialect, *args, **kwds)

    def writeheader(self):
        header = dict(zip(self.fieldnames, self.fieldnames))
        self.writerow(header)

    def _dict_to_list(self, rowdict):
        if self.extrasaction == "raise":
            wrong_fields = [k for k in rowdict if k not in self.fieldnames]
            if wrong_fields:
                raise ValueError("dict contains fields not in fieldnames: " +
                                 ", ".join(wrong_fields))
        return [rowdict.get(key, self.restval) for key in self.fieldnames]

    def writerow(self, rowdict):
        return self.writer.writerow(self._dict_to_list(rowdict))

    def writerows(self, rowdicts):
        rows = []
        for rowdict in rowdicts:
            rows.append(self._dict_to_list(rowdict))
        return self.writer.writerows(rows)

# Guard Sniffer's type checking against builds that exclude complex()
try:
    complex
except NameError:
    complex = float

class Sniffer:
    '''
    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
    Returns a Dialect object.
    '''
    def __init__(self):
        # in case there is more than one possible delimiter
        self.preferred = [',', '\t', ';', ' ', ':']


    def sniff(self, sample, delimiters=None):
        """
        Returns a dialect (or None) corresponding to the sample
        """

        quotechar, doublequote, delimiter, skipinitialspace = \
                   self._guess_quote_and_delimiter(sample, delimiters)
        if not delimiter:
            delimiter, skipinitialspace = self._guess_delimiter(sample,
                                                                delimiters)

        if not delimiter:
            raise Error, "Could not determine delimiter"

        class dialect(Dialect):
            _name = "sniffed"
            lineterminator = '\r\n'
            quoting = QUOTE_MINIMAL
            # escapechar = ''

        dialect.doublequote = doublequote
        dialect.delimiter = delimiter
        # _csv.reader won't accept a quotechar of ''
        dialect.quotechar = quotechar or '"'
        dialect.skipinitialspace = skipinitialspace

        return dialect


    def _guess_quote_and_delimiter(self, data, delimiters):
        """
        Looks for text enclosed between two identical quotes
        (the probable quotechar) which are preceded and followed
        by the same character (the probable delimiter).
        For example:
                         ,'some text',
        The quote with the most wins, same with the delimiter.
        If there is no quotechar the delimiter can't be determined
        this way.
        """

        matches = []
        for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
                      '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
                      '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',  # ,".*?"
                      '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(data)
            if matches:
                break

        if not matches:
            # (quotechar, doublequote, delimiter, skipinitialspace)
            return ('', False, None, 0)
        quotes = {}
        delims = {}
        spaces = 0
        for m in matches:
            n = regexp.groupindex['quote'] - 1
            key = m[n]
            if key:
                quotes[key] = quotes.get(key, 0) + 1
            try:
                n = regexp.groupindex['delim'] - 1
                key = m[n]
            except KeyError:
                continue
            if key and (delimiters is None or key in delimiters):
                delims[key] = delims.get(key, 0) + 1
            try:
                n = regexp.groupindex['space'] - 1
            except KeyError:
                continue
            if m[n]:
                spaces += 1

        quotechar = reduce(lambda a, b, quotes = quotes:
                           (quotes[a] > quotes[b]) and a or b, quotes.keys())

        if delims:
            delim = reduce(lambda a, b, delims = delims:
                           (delims[a] > delims[b]) and a or b, delims.keys())
            skipinitialspace = delims[delim] == spaces
            if delim == '\n': # most likely a file with a single column
                delim = ''
        else:
            # there is *no* delimiter, it's a single column of quoted data
            delim = ''
            skipinitialspace = 0

        # if we see an extra quote between delimiters, we've got a
        # double quoted format
        dq_regexp = re.compile(r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
                               {'delim':delim, 'quote':quotechar}, re.MULTILINE)



        if dq_regexp.search(data):
            doublequote = True
        else:
            doublequote = False

        return (quotechar, doublequote, delim, skipinitialspace)


    def _guess_delimiter(self, data, delimiters):
        """
        The delimiter /should/ occur the same number of times on
        each row. However, due to malformed data, it may not. We don't want
        an all or nothing approach, so we allow for small variations in this
        number.
          1) build a table of the frequency of each character on every line.
          2) build a table of frequencies of this frequency (meta-frequency?),
             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
             7 times in 2 rows'
          3) use the mode of the meta-frequency to determine the /expected/
             frequency for that character
          4) find out how often the character actually meets that goal
          5) the character that best meets its goal is the delimiter
        For performance reasons, the data is evaluated in chunks, so it can
        try and evaluate the smallest portion of the data possible, evaluating
        additional chunks as necessary.
        """

        data = filter(None, data.split('\n'))

        ascii = [chr(c) for c in range(127)] # 7-bit ASCII

        # build frequency tables
        chunkLength = min(10, len(data))
        iteration = 0
        charFrequency = {}
        modes = {}
        delims = {}
        start, end = 0, min(chunkLength, len(data))
        while start < len(data):
            iteration += 1
            for line in data[start:end]:
                for char in ascii:
                    metaFrequency = charFrequency.get(char, {})
                    # must count even if frequency is 0
                    freq = line.count(char)
                    # value is the mode
                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
                    charFrequency[char] = metaFrequency

            for char in charFrequency.keys():
                items = charFrequency[char].items()
                if len(items) == 1 and items[0][0] == 0:
                    continue
                # get the mode of the frequencies
                if len(items) > 1:
                    modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b,
                                         items)
                    # adjust the mode - subtract the sum of all
                    # other frequencies
                    items.remove(modes[char])
                    modes[char] = (modes[char][0], modes[char][1]
                                   - reduce(lambda a, b: (0, a[1] + b[1]),
                                            items)[1])
                else:
                    modes[char] = items[0]

            # build a list of possible delimiters
            modeList = modes.items()
            total = float(chunkLength * iteration)
            # (rows of consistent data) / (number of rows) = 100%
            consistency = 1.0
            # minimum consistency threshold
            threshold = 0.9
            while len(delims) == 0 and consistency >= threshold:
                for k, v in modeList:
                    if v[0] > 0 and v[1] > 0:
                        if ((v[1]/total) >= consistency and
                            (delimiters is None or k in delimiters)):
                            delims[k] = v
                consistency -= 0.01

            if len(delims) == 1:
                delim = delims.keys()[0]
                skipinitialspace = (data[0].count(delim) ==
                                    data[0].count("%c " % delim))
                return (delim, skipinitialspace)

            # analyze another chunkLength lines
            start = end
            end += chunkLength

        if not delims:
            return ('', 0)

        # if there's more than one, fall back to a 'preferred' list
        if len(delims) > 1:
            for d in self.preferred:
                if d in delims.keys():
                    skipinitialspace = (data[0].count(d) ==
                                        data[0].count("%c " % d))
                    return (d, skipinitialspace)

        # nothing else indicates a preference, pick the character that
        # dominates(?)
        items = [(v,k) for (k,v) in delims.items()]
        items.sort()
        delim = items[-1][1]

        skipinitialspace = (data[0].count(delim) ==
                            data[0].count("%c " % delim))
        return (delim, skipinitialspace)


    def has_header(self, sample):
        # Creates a dictionary of types of data in each column. If any
        # column is of a single type (say, integers), *except* for the first
        # row, then the first row is presumed to be labels. If the type
        # can't be determined, it is assumed to be a string in which case
        # the length of the string is the determining factor: if all of the
        # rows except for the first are the same length, it's a header.
        # Finally, a 'vote' is taken at the end for each column, adding or
        # subtracting from the likelihood of the first row being a header.

        rdr = reader(StringIO(sample), self.sniff(sample))

        header = rdr.next() # assume first row is header

        columns = len(header)
        columnTypes = {}
        for i in range(columns): columnTypes[i] = None

        checked = 0
        for row in rdr:
            # arbitrary number of rows to check, to keep it sane
            if checked > 20:
                break
            checked += 1

            if len(row) != columns:
                continue # skip rows that have irregular number of columns

            for col in columnTypes.keys():

                for thisType in [int, long, float, complex]:
                    try:
                        thisType(row[col])
                        break
                    except (ValueError, OverflowError):
                        pass
                else:
                    # fallback to length of string
                    thisType = len(row[col])

                # treat longs as ints
                if thisType == long:
                    thisType = int

                if thisType != columnTypes[col]:
                    if columnTypes[col] is None: # add new column type
                        columnTypes[col] = thisType
                    else:
                        # type is inconsistent, remove column from
                        # consideration
                        del columnTypes[col]

        # finally, compare results against first row and "vote"
        # on whether it's a header
        hasHeader = 0
        for col, colType in columnTypes.items():
            if type(colType) == type(0): # it's a length
                if len(header[col]) != colType:
                    hasHeader += 1
                else:
                    hasHeader -= 1
            else: # attempt typecast
                try:
                    colType(header[col])
                except (ValueError, TypeError):
                    hasHeader += 1
                else:
                    hasHeader -= 1

        return hasHeader > 0
blog

blog

– Официальный Сайт Vavada Casino (2026).3962

Вавада Казино – Официальный Сайт Vavada Casino (2025) ▶️ ИГРАТЬ Содержимое Преимущества и функции Vavada Casino Безопасность и конфиденциальность Виды игр и слотов на официальном сайте Vavada Casino Бонусы и акции Vavada Casino вавада Казино – это популярный онлайн-казино, которое предлагает игрокам широкий спектр игр и услуг. Вавада Казино – …

Read More »

Pin Up Casino – Azərbaycanda onlayn kazino Pin-Up.10026

Содержимое Pin Up Casino haqqında məlumatlar Pin Up Casino-dan giriş Pin Up Casino-da qeydiyyatdan keçmək Qeydiyyat prosesi Qeydiyyat prosesindən istifadə etmək Pin Up Casino-da oyun oynamaq Pin Up Casino-da xidmətlər və tələbə məlumatları Pin Up Casino – Azərbaycanda onlayn kazino Pin-Up Pin Up Casino Azərbaycanda populyarlaşan onlayn kazino platformasıdır. Pin …

Read More »

казино – Официальный сайт Pin Up Casino вход на зеркало.70

Пин Ап казино – Официальный сайт Pin Up Casino вход на зеркало ▶️ ИГРАТЬ Содержимое Пин Ап казино – Официальный сайт Преимущества официального сайта Pin Up Casino Вход на зеркало Преимущества и функции Pin Up Casino В современном мире азартных игр, где каждый день становится все более популярным, Pin Up …

Read More »

казино – Официальный сайт Pin Up Casino вход на зеркало.939

Пин Ап казино – Официальный сайт Pin Up Casino вход на зеркало ▶️ ИГРАТЬ Содержимое Пин Ап казино – Официальный сайт Вход на зеркало Преимущества использования зеркала Pin Up Casino Преимущества и функции Pin Up Casino В современном мире азартных игр, где каждый день появляются новые онлайн-казино, Pin Up Casino …

Read More »

1win официальный сайт букмекера — Обзор и зеркало для входа.1211

Содержимое 1win Официальный Сайт Букмекера Обзор и Зеркало для Входа Преимущества 1win Зеркало для входа Преимущества и Функции 1win Бонусы и Промокоды 1win официальный сайт букмекера — Обзор и зеркало для входа В мире ставок и азарта 1вин является одним из самых популярных букмекеров, предлагающих широкий спектр услуг для игроков …

Read More »

Meilleur Casino en Ligne 2025 – Sites Fiables.3715 (2)

Содержимое Les Critères de Sélection La Légalité La Sécurité La Gamme de Jeux La Réputation Les Offres de Bonus Les Meilleurs Casinos en Ligne Fiables Les Avantages et les Inconvénients Les Avantages Les Inconvénients Conseils pour Jouer de Manière Sûre au Meilleur Casino en Ligne Meilleur Casino en Ligne 2025 …

Read More »

Pin Up Casino — ваше надёжное место для больших выигрышей в Пин Ап Казино Онлайн.265

Содержимое Удобство и безопасность в Pin Up Casino Большой выбор игр и бонусов в Pin Up Casino Pin Up Casino — ваше надёжное место для больших выигрышей в Пин Ап Казино Онлайн В мире онлайн-казино есть много вариантов, но не все они могут сравниться с pin up Casino. Это надёжное …

Read More »

1win — скачать приложение букмекерской конторы.2814 (2)

Содержимое Установка приложения 1win Шаг 1: Скачать приложение Шаг 2: Установка приложения Функциональность приложения 1win Биржевые ставки Личный кабинет Преимущества использования приложения 1win Как скачать приложение 1win Шаги для скачивания 1win apk Обзор безопасности приложения 1win Защита данных Защита от мошенничества 1win — скачать приложение букмекерской конторы В мире ставок …

Read More »

1win — скачать приложение букмекерской конторы.1432 (2)

Содержимое Установка и регистрация 1win Шаги регистрации на 1win Основные функции и преимущества 1win apk Удобство и доступность Бонусы и акции 1win — скачать приложение букмекерской конторы В мире ставок и азарта 1вин является одним из самых популярных букмекерских контор, которые предлагают своим клиентам широкий спектр услуг и возможностей для …

Read More »

1win — регистрация в букмекерской конторе 1вин.3785

1win — регистрация в букмекерской конторе 1вин ▶️ ИГРАТЬ Содержимое Шаги регистрации в 1win Как начать играть и получать бонусы в 1win В мире ставок и азарта 1вин – это имя, которое ассоциируется с надежностью, быстротой и комфортной игрой. Букмекерская контора 1вин – это место, где можно сделать ставку и …

Read More »