Current File : //lib64/python3.6/random.py
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           pick weighted random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from hashlib import sha512 as _sha512
import itertools as _itertools
import bisect as _bisect

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate", "getrandbits", "choices",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None, version=2):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        If *a* is an int, all bits are used.

        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1 (provided for reproducing random
        sequences from older versions of Python), the algorithm for str and
        bytes generates a narrower range of seeds.

        """

        if version == 1 and isinstance(a, (str, bytes)):
            a = a.decode('latin-1') if isinstance(a, bytes) else a
            x = ord(a[0]) << 7 if a else 0
            for c in map(ord, a):
                x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
            x ^= len(a)
            a = -2 if x == -1 else x

        if version == 2 and isinstance(a, (str, bytes, bytearray)):
            if isinstance(a, str):
                a = a.encode()
            a += _sha512(a).digest()
            a = int.from_bytes(a, 'big')

        super().seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super().getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super().setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple(x % (2**32) for x in internalstate)
            except ValueError as e:
                raise TypeError from e
            super().setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
    # longer called; we leave it here because it has been here since random was
    # rewritten back in 2001 and why risk breaking something.
    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError("non-integer arg 1 for randrange()")
        if stop is None:
            if istart > 0:
                return self._randbelow(istart)
            raise ValueError("empty range for randrange()")

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError("non-integer stop for randrange()")
        width = istop - istart
        if step == 1 and width > 0:
            return istart + self._randbelow(width)
        if step == 1:
            raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError("non-integer step for randrange()")
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError("zero step for randrange()")

        if n <= 0:
            raise ValueError("empty range for randrange()")

        return istart + istep*self._randbelow(n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
                   Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
        "Return a random int in the range [0,n).  Raises ValueError if n==0."

        random = self.random
        getrandbits = self.getrandbits
        # Only call self.getrandbits if the original random() builtin method
        # has not been overridden or if a new getrandbits() was supplied.
        if type(random) is BuiltinMethod or type(getrandbits) is Method:
            k = n.bit_length()  # don't use (n-1) here because n can be 1
            r = getrandbits(k)          # 0 <= r < 2**k
            while r >= n:
                r = getrandbits(k)
            return r
        # There's an overridden random() method but no new getrandbits() method,
        # so we can only use random() from here.
        if n >= maxsize:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large.\n"
                "To remove the range limitation, add a getrandbits() method.")
            return int(random() * n)
        if n == 0:
            raise ValueError("Boundary cannot be zero")
        rem = maxsize % n
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
        r = random()
        while r >= limit:
            r = random()
        return int(r*maxsize) % n

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        try:
            i = self._randbelow(len(seq))
        except ValueError:
            raise IndexError('Cannot choose from an empty sequence') from None
        return seq[i]

    def shuffle(self, x, random=None):
        """Shuffle list x in place, and return None.

        Optional argument random is a 0-argument function returning a
        random float in [0.0, 1.0); if it is the default None, the
        standard random.random will be used.

        """

        if random is None:
            randbelow = self._randbelow
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = randbelow(i+1)
                x[i], x[j] = x[j], x[i]
        else:
            _int = int
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = _int(random() * (i+1))
                x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence or set.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use range as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(range(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        if isinstance(population, _Set):
            population = tuple(population)
        if not isinstance(population, _Sequence):
            raise TypeError("Population must be a sequence or set.  For dicts, use list(d).")
        randbelow = self._randbelow
        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("Sample larger than population or is negative")
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize:
            # An n-length list is smaller than a k-length set
            pool = list(population)
            for i in range(k):         # invariant:  non-selected at [0,n-i)
                j = randbelow(n-i)
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            selected = set()
            selected_add = selected.add
            for i in range(k):
                j = randbelow(n)
                while j in selected:
                    j = randbelow(n)
                selected_add(j)
                result[i] = population[j]
        return result

    def choices(self, population, weights=None, *, cum_weights=None, k=1):
        """Return a k sized list of population elements chosen with replacement.

        If the relative weights or cumulative weights are not specified,
        the selections are made with equal probability.

        """
        random = self.random
        if cum_weights is None:
            if weights is None:
                _int = int
                total = len(population)
                return [population[_int(random() * total)] for i in range(k)]
            cum_weights = list(_itertools.accumulate(weights))
        elif weights is not None:
            raise TypeError('Cannot specify both weights and cumulative weights')
        if len(cum_weights) != len(population):
            raise ValueError('The number of weights does not match the population')
        bisect = _bisect.bisect
        total = cum_weights[-1]
        hi = len(cum_weights) - 1
        return [population[bisect(cum_weights, random() * total, 0, hi)]
                for i in range(k)]

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.0)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.0))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / u ** (1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * (-_log(u)) ** (1.0/beta)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
        x = int.from_bytes(_urandom(numbytes), 'big')
        return x >> (numbytes * 8 - k)                # trim excess bits

    def seed(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print(n, 'times', func.__name__)
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print(round(t1-t0, 3), 'sec,', end=' ')
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print('avg %g, stddev %g, min %g, max %g\n' % \
              (avg, stddev, smallest, largest))


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
choices = _inst.choices
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()
blog

blog

Meilleur Casino en Ligne 2025 – Sites Fiables.6959

Содержимое Les Meilleurs Casinos en Ligne pour les Joueurs Français Les Meilleurs Casinos en Ligne Légaux pour les Joueurs Français Les Meilleurs Casinos en Ligne Fiables pour les Joueurs Français Les Meilleurs Casinos en Ligne Gratuits pour les Joueurs Français Comment Choisir un Casino en Ligne Fiable et Sécurisé Meilleur …

Read More »

Best UK Casino Sites 2025 Trusted Reviews and Top Picks.1075

Best UK Casino Sites 2025 – Trusted Reviews and Top Picks ▶️ PLAY Содержимое Top 5 Online Casinos for UK Players How to Choose the Best UK Online Casino Game Selection Customer Support UK Online Casino Bonuses and Promotions Secure and Reliable UK Online Casinos In the ever-evolving world of …

Read More »

Best UK Casino Sites 2025 Trusted Reviews and Top Picks.299

Содержимое Top 5 Online Casinos in the UK Mastercard Casinos: A Secure and Convenient Option Apple Pay Casino: A Convenient and Secure Option Animal Slots: A Fun and Exciting Option Conclusion How to Choose the Best Online Casino for You UK Online Casino Regulations and Licenses Popular Payment Methods in …

Read More »

Los casinos online más populares de España.1496

Los casinos online más populares de España ▶️ JUGAR Содержимое Los casinos online más populares de España Casino online con bono sin depósito Casino online confiable La lista de los mejores casinos online de España Características clave para elegir el mejor casino online En la actualidad, los casinos online han …

Read More »

Meilleur Casino en ligne 2025 – Classement complet.6745

Содержимое Les meilleurs casinos en ligne pour jouer en 2025 Les casinos en ligne français légaux Les nouveaux casinos en ligne Comment choisir le meilleur casino en ligne pour vous Meilleur Casino en ligne 2025 – Classement complet Les casinos en ligne sont devenus très populaires ces dernières années, offrant …

Read More »

Neue Online Casinos in Deutschland.346

Neue Online Casinos in Deutschland ▶️ SPIELEN Содержимое Die Top 5 Neuen Online Casinos in Deutschland Wie funktionieren Online Casinos in Deutschland? Das Online Casino Testbericht Die Vorteile von Online Casinos in Deutschland Mobile Online Casinos in Deutschland Die Online-Casinos-Szene in Deutschland ist ständig in Bewegung. Neue Anbieter kommen auf …

Read More »

Erfahrungen mit Online Casinos in Deutschland.21

Erfahrungen mit Online Casinos in Deutschland ▶️ SPIELEN Содержимое Die Vorteile von Online-Casinos Flexibilität Wahlmöglichkeiten Sicherheit Die Bedenken und Risiken Die Risiken von Online-Casinos Wie wählt man das richtige Online-Casino aus? Top Online Casinos in Deutschland Online Casinos in Deutschland – Ein Überblick Die wichtigsten Regeln und Vorschriften für Online …

Read More »

Meilleur Casino en ligne 2025 – Classement complet.4306

Содержимое Les meilleurs casinos en ligne pour jouer en 2025 Comment choisir le meilleur casino en ligne pour vous Les critères pour choisir le meilleur casino en ligne Meilleur Casino en ligne 2025 – Classement complet Les casinos en ligne sont devenus très populaires ces dernières années, offrant une expérience …

Read More »