Current File : //lib64/python3.6/numbers.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the operators."""

from abc import ABCMeta, abstractmethod

__all__ = ["Number", "Complex", "Real", "Rational", "Integral"]

class Number(metaclass=ABCMeta):
    """All numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    """
    __slots__ = ()

    # Concrete numeric types must provide their own hash implementation
    __hash__ = None


## Notes on Decimal
## ----------------
## Decimal has all of the methods specified by the Real abc, but it should
## not be registered as a Real because decimals do not interoperate with
## binary floats (i.e.  Decimal('3.14') + 2.71828 is undefined).  But,
## abstract reals are expected to interoperate (i.e. R1 + R2 should be
## expected to work if R1 and R2 are both Reals).

class Complex(Number):
    """Complex defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    """

    __slots__ = ()

    @abstractmethod
    def __complex__(self):
        """Return a builtin complex instance. Called for complex(self)."""

    def __bool__(self):
        """True if self != 0. Called for bool(self)."""
        return self != 0

    @property
    @abstractmethod
    def real(self):
        """Retrieve the real component of this number.

        This should subclass Real.
        """
        raise NotImplementedError

    @property
    @abstractmethod
    def imag(self):
        """Retrieve the imaginary component of this number.

        This should subclass Real.
        """
        raise NotImplementedError

    @abstractmethod
    def __add__(self, other):
        """self + other"""
        raise NotImplementedError

    @abstractmethod
    def __radd__(self, other):
        """other + self"""
        raise NotImplementedError

    @abstractmethod
    def __neg__(self):
        """-self"""
        raise NotImplementedError

    @abstractmethod
    def __pos__(self):
        """+self"""
        raise NotImplementedError

    def __sub__(self, other):
        """self - other"""
        return self + -other

    def __rsub__(self, other):
        """other - self"""
        return -self + other

    @abstractmethod
    def __mul__(self, other):
        """self * other"""
        raise NotImplementedError

    @abstractmethod
    def __rmul__(self, other):
        """other * self"""
        raise NotImplementedError

    @abstractmethod
    def __truediv__(self, other):
        """self / other: Should promote to float when necessary."""
        raise NotImplementedError

    @abstractmethod
    def __rtruediv__(self, other):
        """other / self"""
        raise NotImplementedError

    @abstractmethod
    def __pow__(self, exponent):
        """self**exponent; should promote to float or complex when necessary."""
        raise NotImplementedError

    @abstractmethod
    def __rpow__(self, base):
        """base ** self"""
        raise NotImplementedError

    @abstractmethod
    def __abs__(self):
        """Returns the Real distance from 0. Called for abs(self)."""
        raise NotImplementedError

    @abstractmethod
    def conjugate(self):
        """(x+y*i).conjugate() returns (x-y*i)."""
        raise NotImplementedError

    @abstractmethod
    def __eq__(self, other):
        """self == other"""
        raise NotImplementedError

Complex.register(complex)


class Real(Complex):
    """To Complex, Real adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    """

    __slots__ = ()

    @abstractmethod
    def __float__(self):
        """Any Real can be converted to a native float object.

        Called for float(self)."""
        raise NotImplementedError

    @abstractmethod
    def __trunc__(self):
        """trunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        """
        raise NotImplementedError

    @abstractmethod
    def __floor__(self):
        """Finds the greatest Integral <= self."""
        raise NotImplementedError

    @abstractmethod
    def __ceil__(self):
        """Finds the least Integral >= self."""
        raise NotImplementedError

    @abstractmethod
    def __round__(self, ndigits=None):
        """Rounds self to ndigits decimal places, defaulting to 0.

        If ndigits is omitted or None, returns an Integral, otherwise
        returns a Real. Rounds half toward even.
        """
        raise NotImplementedError

    def __divmod__(self, other):
        """divmod(self, other): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (self // other, self % other)

    def __rdivmod__(self, other):
        """divmod(other, self): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (other // self, other % self)

    @abstractmethod
    def __floordiv__(self, other):
        """self // other: The floor() of self/other."""
        raise NotImplementedError

    @abstractmethod
    def __rfloordiv__(self, other):
        """other // self: The floor() of other/self."""
        raise NotImplementedError

    @abstractmethod
    def __mod__(self, other):
        """self % other"""
        raise NotImplementedError

    @abstractmethod
    def __rmod__(self, other):
        """other % self"""
        raise NotImplementedError

    @abstractmethod
    def __lt__(self, other):
        """self < other

        < on Reals defines a total ordering, except perhaps for NaN."""
        raise NotImplementedError

    @abstractmethod
    def __le__(self, other):
        """self <= other"""
        raise NotImplementedError

    # Concrete implementations of Complex abstract methods.
    def __complex__(self):
        """complex(self) == complex(float(self), 0)"""
        return complex(float(self))

    @property
    def real(self):
        """Real numbers are their real component."""
        return +self

    @property
    def imag(self):
        """Real numbers have no imaginary component."""
        return 0

    def conjugate(self):
        """Conjugate is a no-op for Reals."""
        return +self

Real.register(float)


class Rational(Real):
    """.numerator and .denominator should be in lowest terms."""

    __slots__ = ()

    @property
    @abstractmethod
    def numerator(self):
        raise NotImplementedError

    @property
    @abstractmethod
    def denominator(self):
        raise NotImplementedError

    # Concrete implementation of Real's conversion to float.
    def __float__(self):
        """float(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's "true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        """
        return self.numerator / self.denominator


class Integral(Rational):
    """Integral adds a conversion to int and the bit-string operations."""

    __slots__ = ()

    @abstractmethod
    def __int__(self):
        """int(self)"""
        raise NotImplementedError

    def __index__(self):
        """Called whenever an index is needed, such as in slicing"""
        return int(self)

    @abstractmethod
    def __pow__(self, exponent, modulus=None):
        """self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        """
        raise NotImplementedError

    @abstractmethod
    def __lshift__(self, other):
        """self << other"""
        raise NotImplementedError

    @abstractmethod
    def __rlshift__(self, other):
        """other << self"""
        raise NotImplementedError

    @abstractmethod
    def __rshift__(self, other):
        """self >> other"""
        raise NotImplementedError

    @abstractmethod
    def __rrshift__(self, other):
        """other >> self"""
        raise NotImplementedError

    @abstractmethod
    def __and__(self, other):
        """self & other"""
        raise NotImplementedError

    @abstractmethod
    def __rand__(self, other):
        """other & self"""
        raise NotImplementedError

    @abstractmethod
    def __xor__(self, other):
        """self ^ other"""
        raise NotImplementedError

    @abstractmethod
    def __rxor__(self, other):
        """other ^ self"""
        raise NotImplementedError

    @abstractmethod
    def __or__(self, other):
        """self | other"""
        raise NotImplementedError

    @abstractmethod
    def __ror__(self, other):
        """other | self"""
        raise NotImplementedError

    @abstractmethod
    def __invert__(self):
        """~self"""
        raise NotImplementedError

    # Concrete implementations of Rational and Real abstract methods.
    def __float__(self):
        """float(self) == float(int(self))"""
        return float(int(self))

    @property
    def numerator(self):
        """Integers are their own numerators."""
        return +self

    @property
    def denominator(self):
        """Integers have a denominator of 1."""
        return 1

Integral.register(int)
blog

blog

Онлайн казино с моментальным выводом и привлекательными бонусами

Онлайн казино с моментальным выводом и привлекательными бонусами Виртуальные гэмблинг-платформы с мгновенным выплатой средств становятся все более привлекательными среди пользователей, стремящихся к максимальному удобству и оперативности. В подобных онлайн-казино необходимо не только наличие обширного выбора развлечений, но и скорость обработки транзакций. Посредством новейших разработок, многочисленные сервисы, например, как вавада, предлагают …

Read More »

Официальный Сайт Играть в Онлайн Казино Pinco.1661 (3)

Пинко Казино Официальный Сайт – Играть в Онлайн Казино Pinco ▶️ ИГРАТЬ Содержимое Pinco Casino: Официальный Сайт Возможности Онлайн Казино Преимущества игроков в Pinco Казино Большой выбор игр Лучшие условия для игроков 24/7 поддержка Как Играть в Pinco Casino В мире онлайн-казино есть много вариантов для игроков, но не все …

Read More »

1win — скачать приложение букмекерской конторы.4289

1win — скачать приложение букмекерской конторы ▶️ ИГРАТЬ Содержимое Установка приложения 1win Функциональность приложения 1win Главные функции Преимущества использования приложения 1win Как скачать приложение 1win Обзор безопасности приложения 1win В мире ставок и азарта 1вин является одним из самых популярных букмекерских контор, которые предлагают своим клиентам широкий спектр услуг и …

Read More »

Cresus casino en ligne Inscription et connexion.2051

Cresus casino en ligne – Inscription et connexion ▶️ JOUER Содержимое Cresus Casino en Ligne : Inscription et Connexion Inscription au Cresus Casino Connexion au Cresus Casino Inscription au Cresus Casino en Ligne Création de votre compte Cresus Casino Connexion au Cresus Casino en Ligne Connexion avec votre compte Cresus …

Read More »

Официальный Сайт Вход на Рабочее Зеркало Vavada.2091

Вавада Казино Официальный Сайт – Вход на Рабочее Зеркало Vavada ▶️ ИГРАТЬ Содержимое Vavada Casino Official Website: Access to the Working Mirror Vavada Вавада зеркало: что это и почему его нужно? Вавада вход: как получить доступ к играм? Vavada Casino Official Website: Access to the Working Mirror Vavada What is …

Read More »

Gates of Olympus Slot Türkiye.3298

Gates of Olympus Slot Türkiye ▶️ OYNAMAK Содержимое Gates of Olympus Slot Nasıl Oynanır Gates of Olympus Slot Özellikleri ve Sembolleri Gates of Olympus Slot Kazanç Oranları ve Ödülleri Ödüller ve Kazanç Oranları Kazanç Oranları ve Ödüllerin Ayrıntıları gates of olympus oyna, Yunan mitolojisine dayanan bir slot oyunudur. Gates of …

Read More »

Casibom Casino – Güvenilir Online Casino Giriş Adresi.4680

Casibom Casino – Güvenilir Online Casino Giriş Adresi ▶️ OYNAMAK Содержимое Casibom Casino Hakkında Genel Bilgiler Güvenlik ve Güvenilirlik Casibom Casino’da Güvenliği Nasıl Garantiedir? Şifreleme ve Güvenlik Protokolleri Casibom Casino’da Oynayabileceğiniz Oyunlar casibom , en güvenilir online casino sitelerinden biridir. Güvenli ve hızlı bir giriş deneyimi sunar. Casibom giriş sayfasından …

Read More »

Официальный Сайт Играть в Онлайн Казино Pinco.3744 (2)

Пинко Казино Официальный Сайт – Играть в Онлайн Казино Pinco ▶️ ИГРАТЬ Содержимое Удобство и Безопасность в Казино Pinco Возможности и Бонусы Бонусы для новых игроков Преимущества игроков В современном мире интернета и технологий, казино стали одним из самых популярных способов развлечения и заработка. В этом тексте мы будем говорить …

Read More »

Casinos en ligne légitimes pour les joueurs français.388

Casinos en ligne légitimes pour les joueurs français ▶️ JOUER Содержимое Les avantages de jouer dans un casino en ligne légitime Comment choisir un casino en ligne fiable et sérésé Les règles et les lois régissant les casinos en ligne en France Conseils pour jouer de manière responsable dans un …

Read More »